TIE2140 Engineering Economy Solutions to Tutorial #5

Question 1.

(*a***)**

	Pessimistic	Most likely	Optimistic
Capital Investment	\$ 120,000	\$ 100,000	\$ 90,000
Useful Life	6 years	10 years	12 years
Market Value at EoL	\$ 0	\$ 20,000	\$ 30,000
Net annual cash flow	\$ 20,000	\$ 30,000	\$ 35,000

MARR = 10%

i. When all the factors are at their most likely values:

$$AW(10\%) = -100,000 [A/P,10\%,10] + 30,000 + 20,000 [A/F,10\%,10] = $14,980.37 > 0$$

ii. When all the factors are at their optimistic values:

$$AW(10\%) = -90,000 [A/P,10\%,12] + 35,000 + 30,000 [A/F,11\%,12] = $23,194.20 > 0$$

iii. When all the factors are at their pessimistic values:

AW(10%) = -120,000 [A/P, 10%,6] + 20,000 + 0 = -\$7,552.89 < 0

(b) One-Way Range Sensitivity Table:

				AW		
Variable	Pessimistic	Most-likely	Optimistic	Low	High	Swing
Net annual cash flow	\$ 20,000	\$ 30,000	\$ 35,000	\$4,980.37	\$19,980.37	\$15,000.00
Useful life (years)	6	10	12	\$9,631.41	\$16,258.93	\$6,627.52
Capital investment	-\$120,000	-\$100,000	-\$90,000	\$11,725.46	\$16,607.82	\$4,882.36
Market value	\$ 0	\$ 20,000	\$ 30,000	\$13,725.46	\$15,607.82	\$1,882.36

Tornado Diagram for AW

Spider Diagram for AW

- (c) Identification of Sensitive and Non-sensitivity factors:
 - The project AW is most sensitive to Net Annual Cash Flow, followed by Useful Life, and Capital Investment.
 - Market Value at EoL is not very sensitive.

Question 2.

(a)

	Winshear	Blowby	Air-vantage
Capital Investment	\$1,000	\$400	\$1,200
Drag reduction	20%	10%	25%
Maintenance per year	\$10	\$5	\$5
Useful life	10 years	10 years	5 years

Study period = 10 years. Assume repeatability.

Let X = the number of miles driven per year by a tractor.

Reductions in fuel consumption for each alternative:

- Windshear: (20 % / 5 %) (2 % per miles) = 8% per mile
- Blowby: (10 % / 5 %) (2 % per miles) = 4% per mile
- Air-vantage: (25 % / 5 %) (2 % per miles) = 10% per mile

Annual Fuel Costs for each alternative:

- Windshear: $0.92 X \text{ (mile/year)} \times 1/5 \text{ (gallon/mile)} \times \$4.00 \text{ (per gallon)} = \$0.736X$
- Blowby: $0.96 X \text{ (mile/year)} \times 1/5 \text{ (gallon/mile)} \times $4.00 \text{ (per gallon)} = $0.768X$
- Air-vantage: 0.90 X (mile/year) \times 1/5 (gallon/mile) \times \$4.00 (per gallon) = \$0.720X

Equivalent Uniform Annual Cost (EUAC) for each alternative:

- EUAC(Windshear) = 1,000 [A/P, 10%, 10] + 10 + 0.736 X = 1,000 (0.162745395) + 10 + 0.736 X = 172.74539 + 0.736 X
- EUAC(Blowby) = 400 [A/P, 10%, 10] + 5 + 0.768 X= 400 (0.162745395) + 5 + 0.768 X = 70.09816 + 0.768 X
- EUAC(Air-vantage) = 1,200 [A/P, 10%, 5] + 5 + 0.720 X= 1,200 (0.263797481) + 5 + 0.720 X = 321.55698 + 0.720 X

(b)

To determine the breakpoint value between Blowby and Windshear, we solve

EUAC(Blowby) = EUAC(Windshear)70.09816 + 0.768 X = 172.74539 + 0.736 X X = 3,207.73

To determine the breakpoint value between Windshear and Air-vantage, we solve

EUAC(Windshear) = EUAC(Air-vantage)172.74539 + 0.736 X = 321.55698 + 0.720 X X = 9,300.73

Optimal Decision Rule

Miles driven per year	Optimal Choice	
$0 < X \le 3,207.73$	Blowby	
$3207.73 \le X \le 9,300.73$	Windshear	
9,300.73 ≤ <i>X</i>	Air-vantage	

Question 3.

	Alternative 1	Alternative 2
Capital Investment	\$ 4,500	\$ 6,000
Annual revenues	\$ 1,600	\$ 1,850
Annual expenses	\$ 400	\$ 500
Estimated market value	\$ 800	\$ 1,200
Useful life	8 years	10 years

MARR = 15%.

(a) Study period = 40 years. Assume repeatability.

AW(15%) of Alternative 1 over the 40-year study period

= AW(15%) of Alternative 1 over the first 8 years = -4,500 [A/P, 15%, 8] + 1,600 - 400 + 800 [A/F, 15%, 8]= \$ 255.45

AW(15%) of Alternative 2 over 40-year study period

= AW(15%) of Alternative 2 over the first 10 years = -6,000 [A/P, 15%, 10] + 1,850 - 500 + 1,200 [A/F, 15%, 10]= \$ 213.59

Select <u>Alternative 1</u> with higher AW over study period 40 years.

Let I_2 = Capital cost of Alternative 2.

$$AW_2(15\%, I_2) = -I_2 [A/P, 15\%, 10] + 1,850 - 500 + 1,200 [A/F, 15\%, 10]$$

We want to find the value of I_2 such that $AW_2(15\%, I_2) = AW_1(15\%)$:

$$-I_2[A/P, 15\%, 10] + 1,850 - 500 + 1,200[A/F, 15\%, 10] = 255.45$$

 $\Rightarrow I_2 = \$ 5,789.89$

Change in capital cost of Alternative 2 required for decision reversal = 5,789.89 - 6,000= -\$ 210.11 / 6,000 = -3.502%

(b)

(c)

Let life of Alternative 1.

 $AW_1(15\%, N_1) = -4,500 [A/P, 15\%, N_1] + 1,600 - 400 + 800 [A/F, 15\%, N_1]$

We want to find the value of N_1 such that $AW_1(15\%, N_1) = AW_2(15\%)$:

 $-4,500 [A/P, 15\%, N_1] + 1,600 - 400 + 800 [A/F, 15\%, N_1] = 213.59 - 4,500 [A/P, 15\%, N_1] + 986.41 + 800 [A/F, 15\%, N_1] = 0$

Using Excel NPER function

 $N_1 = NPER(0.15, 986.41, -4500, 800, 0) = 7.321$ years

Change in useful life of Alternative 1 required for decision reversal = 7.321 - 8 = -0.679 years

%-change required = -0.679 / 8 = -8.48%

Question 4.

(a) PW(N) = -500,000 + 200,000 [P/A, 12%, N]

N	р	PW	$p \times PW$	PW - E[PW]	$p \times (PW - E[PW])^2$
3	0.1	-80,082.68	-8,008.27	-194,943.70	3,800,304,582.45
4	0.1	4,536.80	453.68	-110,324.22	1,217,143,324.65
5	0.2	78,118.95	15,623.79	-36,742.06	269,995,823.16
6	0.3	142,103.44	42,631.03	27,242.42	222,644,871.05
7	0.2	197,742.12	39,548.42	82,881.10	1,373,855,485.38
8	0.1	246,123.58	24,612.36	131,262.57	1,722,986,141.40
			114,861.02		8,606,930,228.10

E[PW] = \$ 114,861.02 Var[PW] = \$\$ 8,606,930,228.10 $\sigma[PW] = \$ 92,773.54$

(b) The CDF for the *PW* is plotted below:

(c)

- *i*. Downside Risk of Project = $Prob\{PW < 0\} = 0.1$
- *ii.* Chance of achieving an upside potential of $PW \ge \$150,000 = 1 0.7 = 0.3$
- *iii.* Present Equivalent Value-at-Risk (95% confidence) = -(-80,082.68) = **\$ 80,082.68**

Question 5.

MARR = 15%.

	Alternative A		Alternative <i>B</i>	
EoY	Expected Cash Flow (\$)	Std Dev. of Cash Flow (\$)	Expected Cash Flow (\$)	Std Dev. of Cash Flow (\$)
0	-8,000	0	-12,000	500
1	4,000	600	4,500	300
2	6,000	600	4,500	300
3	4,000	800	4,500	300
4	6,000	800	4,500	300

(*a*) When the cash flows are mutually independent:

For Investment A:

$$E[PW(A)] = -8,000 + \frac{4,000}{(1+0.15)} + \frac{6,000}{(1+0.15)^2} + \frac{4,000}{(1+0.15)^3} + \frac{6,000}{(1+0.15)^4}$$

= \$6,075.71
$$Var[PW(A)] = 0 + \frac{600^2}{(1+0.15)^2} + \frac{600^2}{(1+0.15)^4} + \frac{800^2}{(1+0.15)^6} + \frac{800^2}{(1+0.15)^8}$$

= \$\$963,949.69
$$\sigma[PW(A)] = \sqrt{963,949.69}$$

= \$981.81

For Investment *B*:

$$E[PW(B)] = -12,000 + \frac{4,500}{(1+0.15)} + \frac{4,500}{(1+0.15)^2} + \frac{4,500}{(1+0.15)^3} + \frac{4,500}{(1+0.15)^4}$$

= \$847.40
$$Var[PW(B)] = 500^2 + \frac{300^2}{(1+0.15)^2} + \frac{300^2}{(1+0.15)^4} + \frac{300^2}{(1+0.15)^6} + \frac{300^2}{(1+0.15)^8}$$

= \$\$437,841.37
$$\sigma[PW(B)] = \sqrt{437,841.37}$$

= \$661.70

Investment A has a higher expected PW than Investment B, but the standard deviation of Investment A is larger than that of Investment B. Hence the mean-variance criterion is non conclusive.

(b) When the cash flows are mutually independent;

$$E[PW(A - B)] = E[PW(A)] - E[PW(B)]$$

= 6,075.71-847.40
= \$ 5,228.30
$$Var[PW(A - B)] = Var[PW(A)] + Var[PW(B)]$$

= 963,949.69 + 437,841.37
= \$\$ 1,401,791.05
$$\sigma[PW(A - B)] = \sqrt{1,401,791.05}$$

= \$1,183.97

(c) When not all the cash flows for investment A are mutually independent and coefficients of correlations are $\rho_{12} = 0.1$, $\rho_{23} = 0.2$, $\rho_{34} = 0.3$:

E[PW(A)] =\$ 6,075.71

$$Var[PW(A)] = 0 + \frac{600^2}{(1+0.15)^2} + \frac{600^2}{(1+0.15)^4} + \frac{800^2}{(1+0.15)^6} + \frac{800^2}{(1+0.15)^8} + \frac{2(0.1)(600)(600)}{(1+0.15)^3} + \frac{2(0.2)(600)(800)}{(1+0.15)^5} + \frac{2(0.3)(800)(800)}{(1+0.15)^7} = \$\$1,251,108.61$$

 $\sigma[PW(A)] = \sqrt{1,251,108.61}$ = \$1,118.53