TIE2140 Engineering Economy Solutions to Tutorial # 8

Question 1.

Study period = 8 years Before-tax MARR = 10%.

The remaining useful life of old crane = 10 years is not relevant to our analysis here.

Keep the Old Crane (Defender):

The investment value of the defender is its current market value plus the cost of the overhaul required to keep it in service.

Capital investment = \$8,000 + \$5,000 = \$13,000 Annual O&M costs = \$3,000 Market value at EoY 8 = \$0

AW(10%) of Defender = -13,000 [A/P, 10%, 8] -3,000 = -13,000 (0.1874440) -3,000 = -\$ <u>5,436.77</u>

Buy New Crane (Challenger):

Capital investment = \$20,000 Annual O&M costs = \$1,000 Market value EOY 8 = \$4,000

AW(10%) of challenger = -20,000 [A/P, 10%, 8] - 1,000 + 4,000 [A/F, 10%, 8]= -20,000 (0.1874440) - 1,000 + 4,000 (0.0874440)= -\$ 4,399.10

Decision: Replace the old crane with the new crane as $AW_{Challenger} > AW_{Defender}$.

Question 2.

Cost of new ESP = \$80,000

MARR = 15%

Using the Total Marginal Cost Approach, the *EUAC* of using the ESP for k = 1 to 5 years are computed:

	(A)	(B)	(C)	(D)	(E)=(B)+(C)+(D)	(F)
EoY	MV(k)	Loss of MV during year <i>k</i>	Cost of capital <i>i</i> * <i>MV</i> (<i>k</i> -1)	Annual expenses $E(k)$	Total Marginal Cost <i>TC</i> (<i>k</i>)	EUAC(k)
0	80,000					
1	60,000	20,000	12,000	30,000	62,000	62,000.00
2	50,000	10,000	9,000	30,000	49,000	55,953.49
3	40,000	10,000	7,500	35,000	52,500	54,958.96
4	25,000	15,000	6,000	40,000	61,000	56,168.77
5	12,500	12,500	3,750	45,000	61,250	56,922.40

$$\begin{split} EUAC_{1} &= \left(\frac{62,000}{(1+0.15)}\right) [A/P,15\%,1] = 62,000.00\\ EUAC_{2} &= \left(\frac{62,000}{(1+0.15)} + \frac{49,000}{(1+0.15)^{2}}\right) [A/P,15\%,2] = 55,953.49\\ EUAC_{3} &= \left(\frac{62,000}{(1+0.15)} + \frac{49,000}{(1+0.15)^{2}} + \frac{52,500}{(1+0.15)^{3}}\right) [A/P,15\%,3] = 54,958.96\\ EUAC_{4} &= \left(\frac{62,000}{(1+0.15)} + \frac{49,000}{(1+0.15)^{2}} + \frac{52,500}{(1+0.15)^{3}} + \frac{61,000}{(1+0.15)^{4}}\right) [A/P,15\%,4] = 56,168.77\\ EUAC_{5} &= \left(\frac{62,000}{(1+0.15)} + \frac{49,000}{(1+0.15)^{2}} + \frac{52,500}{(1+0.15)^{3}} + \frac{61,000}{(1+0.15)^{4}} + \frac{61,250}{(1+0.15)^{5}}\right) [A/P,15\%,5] = 56,922.40 \end{split}$$

Minimum *EUAC* occurs at EoY 3 = **\$ 54,958.96**

Economic Service life of ESP = 3 years.

Question 3.

MARR = 10%

(a) Economic Service Life of Challenger

Challenger:

The *EUAC* of using the challenger for k years (k = 1 to 4) are as follows:

	(A)	(B)	(C)	(D)	(E)=(B)+(C)+(D)	(F)
EoY k	MV(k)	Loss of MV during year k	Cost of capital <i>i*MV(k-</i> 1)	Annual expenses $E(k)$	Total Marginal Cost <i>TC</i> (<i>k</i>)	EUAC(k)
0	50,000					
1	40,000	10,000	5,000	13,000	28,000	28,000.00
2	32,000	8,000	4,000	15,500	27,500	27,761.90
3	24,000	8,000	3,200	18,000	29,200	28,196.37
4	16,000	8,000	2,400	20,500	30,900	28,778.93

$$EUAC_{1} = \left(\frac{28,000}{(1+0.1)}\right) [A/P,10\%,1] = 28,000.00$$

$$EUAC_{2} = \left(\frac{28,000}{(1+0.1)} + \frac{27,500}{(1+0.1)^{2}}\right) [A/P,10\%,2] = 27,761.90$$

$$EUAC_{3} = \left(\frac{28,000}{(1+0.1)} + \frac{27,500}{(1+0.1)^{2}} + \frac{29,200}{(1+0.1)^{3}}\right) [A/P,10\%,3] = 28,196.37$$

$$EUAC_{4} = \left(\frac{28,000}{(1+0.1)} + \frac{27,500}{(1+0.1)^{2}} + \frac{29,200}{(1+0.1)^{3}} + \frac{30,900}{(1+0.1)}\right) [A/P,10\%,4] = 28,778,.93$$

Minimum *EUAC* for Challenger = $\underline{\$27,761.90}$ occurs at k = 2.

Economic Service Life of Challenger = <u>2 years</u>

(b) Optimal replacement time for Defender.

Defender:

The Total Marginal cost of keeping the defender for k more years (k = 0 to 4 years) are given in column (E) below:

	(A)	(B)	(C)	(D)	(E)=(B)+(C)+(D)	(F)
EoY	MV(k)	Loss of MV during year k	Cost of capital <i>i*MV(k-1)</i>	Annual expenses $E(k)$	Total Marginal Cost <i>TC</i> (<i>k</i>)	EPC(k)
0	35000					\$277,619.05
1	25,000	10,000	3,500	18,500	32,000	\$281,471.86
2	21,000	4,000	2,500	21,000	27,500	\$281,255.41
3	17,000	4,000	2,100	23,500	29,600	\$282,636.40
4	13,000	4,000	1,700	26,000	31,700	\$285,326.17

We note that the defender's TC(k) values are not monotonically non-decreasing in k. Hence a year-by-year computation of EPC_k if the defender is replaced at EoY k, is done to determine the optimal replacement time.

$$EPC_{0} = \frac{27,761.90}{0.1} = 277,619.05$$

$$EPC_{1} = \frac{32,000}{(1+0.1)} + \frac{27,761.90/0.1}{(1+0.1)} = 281,471.86$$

$$EPC_{2} = \frac{32,000}{(1+0.1)} + \frac{27,500}{(1+0.1)^{2}} + \frac{27,761.90/0.1}{(1+0.1)^{2}} = 281,255.41$$

$$EPC_{3} = \frac{32,000}{(1+0.1)} + \frac{27,500}{(1+0.1)^{2}} + \frac{29,600}{(1+0.1)^{3}} + \frac{27,761.90/0.1}{(1+0.1)^{3}} = 282,636.40$$

$$EPC_{4} = \frac{32,000}{(1+0.1)} + \frac{27,500}{(1+0.1)^{2}} + \frac{29,600}{(1+0.1)^{3}} + \frac{31,700}{(1+0.1)^{4}} \frac{27,761.90/0.1}{(1+0.1)^{4}} = 285,326.17$$

Results are summarized in Column (F).

Minimum EPC_k (Opportunity Cost) = \$277,619.05 occurs at k = 0

Hence the Defender should be replaced **immediately** by the Challenger. The Challenger is then repeated every 2 years under the repeatability assumption.

EUAC (Cash flow) over study period infinity = (277,619.05 - 35,000) 0.1 = \$24,261.90

Question 4.

MARR = 10%

(a) Economic Service Life of Challenger

	(A)	(B)	(C)	(D)	(E)=(B)+(C)+(D)	(F)
EoY k	MV(k)	Loss of MV during year k	Cost of capital = i*MV(k-1)	Annual expenses E(k)	Total Marginal Cost TC(k)	EUAC(k)
0	70,000					
1	56,000	14,000	7,000	5,500	26,500	26,500.00
2	44,000	12,000	5,600	6,800	24,400	25,500.00
3	34,000	10,000	4,400	7,400	21,800	24,382.18
4	22,000	12,000	3,400	9,700	25,100	24,536.85

The *EUAC* of using the challenger for k years (k=1 to 4) are as follows:

$$EUAC_{1} = \left(\frac{26,500}{(1+0.1)}\right) [A/P,10\%,1] = 26,500.00$$

$$EUAC_{2} = \left(\frac{26,500}{(1+0.1)} + \frac{24,400}{(1+0.1)^{2}}\right) [A/P,10\%,2] = 25,500.00$$

$$EUAC_{3} = \left(\frac{26,500}{(1+0.1)} + \frac{24,400}{(1+0.1)^{2}} + \frac{21,800}{(1+0.1)^{3}}\right) [A/P,10\%,3] = 24,382.18$$

$$EUAC_{4} = \left(\frac{26,500}{(1+0.1)} + \frac{24,400}{(1+0.1)^{2}} + \frac{21,800}{(1+0.1)^{3}} + \frac{25,100}{(1+0.1)^{4}}\right) [A/P,10\%,4] = 24,536.85$$

Minimum *EUAC* for Challenger = $EUAC^* =$ **\$24,382.18** occurs at *k* = 3. Economic Service Life of Challenger = 3 years

(b) Optimal replacement time for Defender under infinite planning horizon.

The Total Marginal cost of keeping the defender for k more years (k = 0 to 4 years) are given in column (E) below:

	(A)	(B)	(C)	(D)	(E)=(B)+(C)+(D)
EoY	MV(k)	Loss of MV during year <i>k</i>	Cost of capital = $i*MV(k-1)$	Annual expenses $E(k)$	Total Marginal Cost <i>TC(k)</i>
0	40,000				
1	30,000	10,000	4,000	8,500	22,500
2	20,000	10,000	3,000	10,500	23,500
3	12,000	8,000	2,000	14,000	24,000
4	4,000	8,000	1,200	16,000	25,200

The defender's TC_k values are monotonically non-decreasing in k and

 TC_3 of defender (24,000) < $EUAC^*$ of challenger (24,382.18) < TC_4 of defender (25,200)

Hence the Defender should be replaced by the Challenger at EoY 3. The Challenger is then repeated every 3 years.

(c) Optimal replacement plan under finite planning horizon.

MARR = 10%Study period = 4 years. Challenger can be repeated only once within the next 4 years.

Current MV of defender = \$40,000.

	TC_1	TC_2	TC ₃	TC_4
Defender	22,500	23,500	24,000	25,200
Challenger	26,500	24,400	21,800	25,100

Let a replacement plan be represented by the tuple (k_1, k_2, k_3) where

 k_1 = number of years the defender is kept in use before being replaced by a challenger.

 k_2 = number of years the first challenger is used before being replaced by another identical challenger k_3 = number of years the second challenger is used (if at all).

The 11 possible replacement plans and the EPC and EUAC of each plan are given below:

	Def	C1	C2		Marginal Cos				
Plan	k1	k2	k3	1	2	3	4	EPC	EUAC
1	0	1	3	26,500	26,500	24,400	21,800	79,213.51	24,989.55
2	0	2	2	26,500	24,400	26,500	24,400	80,831.57	25,500.00
3	0	3	1	26,500	24,400	21,800	26,500	78,734.72	24,838.50
4	0	4	0	26,500	24,400	21,800	25,100	77,778.50	24,536.85
5	1	1	2	22,500	26,500	26,500	24,400	78,930.74	24,900.34
6	1	2	1	22,500	26,500	24,400	26,500	78,787.31	24,855.10
7	1	3	0	22,500	26,500	24,400	21,800	75,577.15	23,842.38
8	2	1	1	22,500	23,500	26,500	26,500	77,885.73	24,570.67
9	2	2	0	22,500	23,500	26,500	24,400	76,451.40	24,118.19
10	3	1	0	22,500	23,500	24,000	26,500	76,007.44	23,978.13
11	4	0	0	22,500	23,500	24,000	25,200	75,119.53	23,698.02

- The optimal plan is (4, 0, 0) which is to keep the defender for 4 more years.
- *EPC*(Opportunity Cost) of optimal plan = \$75,119.53
- *EUAC*(Opportunity Cost) of optimal plan = 75,119.53[*A*/*P*, 10%, 4] = \$ 23,698.02
- *EUAC*(Cash Flows) of optimal plan = (75,119.53 40,000) [*A*/*P*, 10%, 4] = \$11,079.19