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Chapter 2 Probabilistic Thinking 
 
 
 

“In any decision problem, the only thing that is certain is uncertainty” 
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2.1 Representing Uncertainty 

2.1.1 Probability Distributions and Trees 
 

• Suppose we are surveying the beer-drinking habits of customers at a shopping mall. 
 

• We are concerned about whether the next person we meet is a beer drinker or not.   

• We denote this uncertain event by B. 
 

• Let b1 and b2 be two possible outcomes of B, where b1 denotes the outcome that the next person 
we meet is a beer drinker, and b2 denotes otherwise. 

 
• Suppose we assess that the probability of outcome b1 is 0.2 and that of b2 is 0.8, we denote this 

information by a probability distribution denoted as follows: 
 
 p(b1 | ξ) = 0.2 
 p(b2  | ξ) = 0.8  

 
where ξ represents all the background information brought to bear in assessing the probability 
values.   

 
 Note that we must always have p(b1 | ξ) +  p(b2 |  ξ) = 1 exactly.  Otherwise, the information is 

not valid. 

• We may also represent this information using a Probability Tree as follow: 
 

 
 

• For an event with three possible outcomes we use a probability tree with three branches: 
 

 
 
• The probability distribution is denoted by: 
 
 p(b1| ξ) = 0.7 
 p(b2| ξ) = 0.2 
 p(b3| ξ) = 0.1 

 
• Again, we must have p(b1| ξ) + p(b2| ξ) + p(b3| ξ) = 1. 
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2.1.2 Interpretations of Probability 
 
• There are two main contending views about how to interpret and understand the meaning of 

probability: 
 
1. The Frequentist view 
2. The Subjective view 

 
 
The Frequentist View 
 
• Probabilities are fundamentally dispositional properties of non-deterministic physical systems, 
 
• Probabilities are viewed as long-run frequencies of events.  If an event is repeated, then the 

frequency of occurrence, as the number of trials approaches infinity, is the probability of the 
event. 

 
• This is the standard interpretation used in classical statistics where experiments are conducted 

and data collected for inference.  
 
Examples 
 
1. The probability of kill of a surface-to-air missile is the proportion of missiles that hit the target if 

a very large number of identical missiles are fired under identical conditions. 
 
2. The probability that a light bulb lasts for at least 1,000 hours is the proportion of identical bulbs 

that achieved that life in a very large sample. 
 
 
The Subjective (Bayesian) View 
 
• Probabilities are representations of our subjective degree of belief, according to Thomas Bayes 

and Pierre Simon de Laplace. 
 
• Probabilities in general are not necessarily tied to any physical or process which can be repeated 

indefinitely. 
 

 

 
Thomas Bayes (1702-1761) 
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Examples 
 
1. A company may believe that a new product to be launched will be successful with a certain 

probability based on its market research. 
 

2. You believe that you will score at least an A- for this course with a certain probability because 
you have reviewed its content and made an assessment based on your ability. 

• Subjective probabilities are based on individual personal judgments based on the person’s 
knowledge, expertise, past data, or any other relevant information.   

 
• It is likely that no two individuals will always give the same numerical value for the same event.  

Hence, there is no such thing as “The Probability” of an event.   
 
• Ultimately, all probabilities are subjectively assessed based on some information.   
 
• We call the information brought to bear in assessing a probability the “background 

information” for the probability. 
 

 

2.1.3 Marginal and Conditional Probabilities 
 
• Probabilities that were assessed solely based on a specific set of background information are 

called Marginal Probabilities. 
 

• For example, the following probabilities for outcomes of event B are marginal probabilities: 

 p(b1 | ξ) = 0.2 
 p(b2 | ξ) = 0.8  

 
• In practice, we may not be able to assess the marginal probability distribution of an event directly. 

 
• However, we may be able to assess its probability conditioned on the outcomes of another event.  

This results in Conditional Probabilities.   

• The Conditional Probability of event X given event Y and background information ξ, denoted 
by p(X | Y, ξ), is  

 

)|(
)| and (),|(

ξ
ξξ

Yp
YXpYXp =   for p(Y | ξ) ≠ 0. 

 
• Note that the numerator p(X and Y | ξ) is the probability that both X and Y occur.  It is called the 

Joint Probability for X and Y. 
 
• Also, the denominator p(Y | ξ) cannot be zero because it is not possible or meaningless to talk 

about the probability of an event conditioned on another event that definitely will not happen. 
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Example (Conditional Probability) 
 
• Suppose we are concerned with whether the next person we meet is a beer-drinker or not (denoted 

by event B), and also whether he/she is a graduate or not (denote by event G). 
 
• We could represent events B and G with the following probability tree: 
 
 

 
 
 

• The probabilities of g1 and g2 are based on whether b1 or b2 occurs in addition to the general 
background information ξ.   

 
• These Conditional Probabilities are denoted by: 
 

p(g1| b1, ξ) =  0.1 p(g2| b1, ξ) = 0.9 
p(g1| b2, ξ) =  0.7 p(g2| b2, ξ) = 0.3 

 
 
• The above set of numbers is also called a Conditional Probabilities Table (CPT). 
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2.1.4 Probabilistic Dependence and Independence 
 
• Let A and B be two uncertain binary-outcome events.   

 
• Let p(A | B, ξ) be the conditional probability of A given B. 
 
Probabilistic Dependence 
 
• Consider the following conditional probability table for A and B: 
 

 p(A=a1 | B, ξ) p(A=a2 | B, ξ) 

B = b1 0.7 0.3 

B = b2 0.2 0.8 
 
• We observe that the conditional probability distribution for A changes when the outcome of B 

switches from b1 to b2. We say that A is probabilistically dependent on B (given background 
information ξ). 

 
• Events A and B are said to be Probabilistic Dependent if p(A | B=b1, ξ) ≠ p(A | B=b2, ξ) for A=a1 

and a2. That is, the conditional probability of A given B depends on the specific outcome of B. 
 
 
 
Probabilistic Independence 

 
• Consider the following conditional probability table for A and B: 

 
 p(A=a1 | B, ξ) p(A=a2 | B, ξ) 

B = b1 0.7 0.3 
B = b2 0.7 0.3 

 
 

• We observe that the probability distribution for A does not depend on whether the outcome of B 
is b1 or b2. We say that A is probabilistically independent of B (given background information ξ). 
 

• Events A and B are said to be Probabilistic Independent if p(A | B=b1, ξ) = p(A | B=b2, ξ) for 
A=a1 and a2. That is, the conditional probability of A given B does not depend on the specific 
outcome of B. 

 
• In fact, if A is independent of B, then p(A | B, ξ) = p(A | ξ).  
 
• Intuitively, probabilistic independence means knowing the outcome of one event does not provide 

any information on the probability of outcomes of the other event. 
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2.1.5 Changing the Order of Conditioning  
 

• In the above example, we have drawn the tree (reproduced below) in the order B to G and 
conditioned the probability of G to the possible outcomes of B.   
 

 
 

• In decision making, we may need to have the probability tree drawn in the order G to B: 
 
 

 
 
 

• We will need the following probabilities to complete the tree: 
 
 p(g1 | ξ ),     p(g2 | ξ) 
 p(b1 | g1, ξ), p(b2 | g1, ξ) 
 p(b1 | g2, ξ), p(b2 | g2, ξ) 

 
 

• These values may be obtained by “Flipping the Tree”. 
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Method 1:  Graphical Approach 
 
• Given the probability tree: 

 

 
 
• Step 1: Change the ordering of the underlying tree: 
 

 
 
 
 
• Step 2:  Transfer the end-point joint probabilities from the original tree to the new tree: 
 

 
  

0.2 

0.8 

b1 

b2 

g1 

g2 

g1 

g2 

b1g1 

b1g2 

b2g1 

b2g2 

0.1 

0.9 

0.7 

0.3 

0.02 

0.18 

0.56 

0.24 

1.00 

g1 

g2 

b1 

b2 

b1 

b2 

g1b1 

g1b2 

g2b1 

g2b2 

g1 

g2 

b1 

b2 

b1 

b2 

g1b1 

g1b2 

g2b1 

g2b2 

0.02 

0.56 

0.18 

0.24 

1.00 



DA (2024)   2-9 

 
• Step 3: Compute the marginal probability for the first variable in the new tree, i.e., G.  We add 

the joint probabilities that are related to g1 and g2 respectively.   
 

 
 

p(g1| ξ) =  0.02 + 0.56 = 0.58 
 

p(g2| ξ) =  0.18 + 0.24 = 0.42 
 
 
 
 
• Step 4: Compute conditional probabilities for B given G. 
 

 
 
 

p(b1| g1, ξ) = 0.02/0.58 = 0.034  p(b1| g2, ξ) = 0.18/0.42 = 0.429 
 

p(b2| g1, ξ) = 0.56/0.58 = 0.966  p(b2| g2, ξ) = 0.24/0.42 = 0.571 
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Method 2:  Using Bayes’ Theorem 
 
• If you can do the above tree-flipping to change the order of conditioning of two events, you are 

already applying Bayes’ Theorem. 
 
Bayes’ Theorem 
 
• Given two uncertain events X and Y.  Suppose the probabilities p(X | ξ) and p(Y | X, ξ) are known, 

then 

)|(
),|()|(),|(

ξ
ξξξ

Yp
XYpXpYXp =

 
where the denominator may be computed as: 
 

∑=
X

XYpXpYp )||()|()|( ξξξ
 

 
 
 
Example 
 
• In the previous tree-flipping example, we were given: 
 

p(b1| ξ) = 0.2  p(g1| b1, ξ) =  0.1  p(g1| b2, ξ) =  0.7 
p(b2| ξ) = 0.8  p(g2| b1, ξ) =  0.9  p(g2| b2, ξ) =  0.3 

 
 
• We may compute the values of p(b1| g1, ξ) and p(b1| g2, ξ) as follows: 
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2.2 Application of Conditional Probabilities 
 
Let’s Make a Deal Game Show (Monte Hall Problem) 
 
• Consider the TV game show where the contestant is shown on stage three doors, behind one of 

which contains a valuable prize; the other two nothing.  The host knows where the prize is at the 
start of the game. 
 

Rules of the Game 
• The contestant is asked to choose one of the doors.   
• The host will open one of the unchosen doors making sure that it has nothing. 
• The contestant is then asked to decide if he wishes to keep his original selection or switch to the 

other unopen door. 
• The contestant receives the “prize” behind the door that he finally chooses.   
 
Questions 
 
• Assuming that the prize was equally likely to be behind any of the three doors at the start of the 

game, and suppose the contestant chose door A and the host opened door B and was shown to be 
empty, what advice would you give the contestant?   

 
I. Stick to original choice door A 
 
II. Switch to the unopen door C 
 
III. It does not matter whether I choose A or C, as the chances of winning the prize are equal. 

 
 

Answer:     ____________________ 
 
 
 
 
 
• Many people chose option III.  One possible line of reasoning for choosing III is as follows: 
 

Since the prize is equally likely to be behind any door, and since door B is confirmed to be empty, 
the prize is now equally likely to be behind either A or C.  Hence, it does not matter whether I 
switch from A to C or not.   

 
 
• Do you agree with the above reasoning? 
 
 
 
• Let us do a proper probabilistic analysis to select the door. 
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Probabilistic Analysis 
 
• Assume that the doors are labeled A, B, and C, which also denotes the event that the prize is 

behind it. 
 
• At the beginning of the game, we have p(A) = p(B) = p(C) = 1/3. 
 
• Suppose the contestant chose A, then the conditional probabilities that the host will open door B 

or C are given by the following probability tree: 
 

 
 

• If B is open (confirming that the prize is not there), we are interested in determining the following 
conditional probabilities: 
• p(Prize is at A | B is open, i.e., is empty ) 
• p(Prize is at C | B is open, i.e. is empty ) 

 
• These probabilities can be obtained by flipping the above tree: 
 

 
 
• From the flipped tree, we have 

• p(Prize is at A | B is open) = 1/3 
• p(Prize is at C | B is open) = 2/3 
 

• The probability that the prize is at C given that B has been open is twice the probability that the 
prize is at A. 

 
• Hence, the contestant should switch from A to C to double his chance of winning. 
 
• In general, if you have chosen any door, just switch to the unopened door after the host has opened 

a door. 
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Complete Probabilistic Analysis 
 

 
 

• If A is chosen, then 
If the host opens B, decision is swap to C to increase the probability from 1/3 to 2/3. 

 If the host opens C, decision is swap to B to increase the probability from 1/3 to 2/3. 
   

 
 

• If B is chosen, then 
If the host opens A, decision is swap to C to increase the probability from 1/3 to 2/3. 

 If the host opens C, decision is swap to A to increase the probability from 1/3 to 2/3. 
 

 
 

• If C is chosen, then 
If the host opens A, decision is swap to B to increase the probability from 1/3 to 2/3. 

 If the host opens B, decision is swap to A to increase the probability from 1/3 to 2/3. 
 
 
General Optimal Strategy 
 
• Choose any door, and after the host opens a door, always swap the door you have chosen earlier 

with the unopened door. 
 

• In all cases, your probability of winning will increase from 1/3 to 2/3. 
 
 
Extensions to the Problem: 
1. 3-door Problem with unequal prior probabilities 
2. 4-door Problem with equal and unequal priors 
3. N-door Problem with equal and unequal priors 
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2.3 Dealing with New Information using Bayes Theorem 

2.3.1 Updating of Probabilities Based on New Evidence or Information 
 
• Recall that we assign a probability p(A | ξ) to the outcome of an event A based on our assessment 

of the likelihood of the event using whatever background information ξ we may have.  
 
• p(A | ξ) is known as our Prior Probability for event A.   
 
• Suppose that later, a piece of new information or evidence E has arrived.  How do we incorporate 

the new information or evidence into our assessment of the probability of A?   
 
• The updated probability for A is given by p(A | E, ξ) which is known as the Posterior Probability 

of A in the light of evidence E.   
 
• It can be computed via Bayes’ Theorem: 
 

)|(
),|()|(),|(

ξ
ξξξ

Ep
AEpApEAp =  

 
where p(E | A, ξ ) is called the Likelihood Function for the evidence E and ξ, and   
 

∑=
j

jj AEpApEp ),|()|()|( ξξξ . 

 
 
Example:  Weather Forecasting 
 
• We are interested in the weather tonight.  Define the uncertain event R as the weather condition 

tonight with outcome r1 = “Rains tonight” and outcome r2 = “Does not rain tonight”.  
 
• Based on our judgment and experience, we assess the following prior probabilities:    
 

p(r1 | ξ) = 0.6  
p(r2 | ξ) = 0.4 

 
• We can improve our understanding of the weather tonight if we have more information. 
 
• A weather forecast service is available free of charge.  Unfortunately, its forecast is not always 

correct.  
 
• How do we combine the information we already have with new information from the forecast 

which is subject to error? 
 
• Let S represents the imperfect weather forecast with two possible outcomes:  
 

s1 = “Weather forecast = rain”  
s2 = “Weather forecast = no rain”  
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• Based on past performance of the forecast, we assess the correctness of the weather station by 

the following matrix: 
 

Actual weather condition 
Weather forecast 

It will rain tonight (s1) It will not rain tonight (s2) 

Rains tonight (r1) 0.9 0.1 

Does not rain tonight (r2) 0.3 0.7 
 
• Interpretation of the data: Given that it will rain tonight, the station will forecast it correctly with 

a 90% chance, and given it will not rain tonight, the station will forecast it correctly with a 70% 
chance.   

 
• Stated in terms of conditional probabilities  

 p(s1| r1, ξ) = 0.9 
 p(s2| r2, ξ) = 0.7 

• Suppose you tune in to the weather station now and it says “It will rain tonight” i.e., s1 is observed 
to be true, what probability should you now assign to the outcome it will indeed rain tonight? 

 
• Remember that your prior assignment is p(r1| ξ) = 0.6.    
 
• Given that s1 is true, you should now be interested in the probability p(r1 | s1, ξ) which is the 

probability that it will rain tonight given that the forecast is “It will rain tonight”. 
 
• Unfortunately, this information is not directly available and you have to flip the tree or apply 

Bayes’ Theorem to get it. 
 
• Your prior knowledge about the weather together with your knowledge about the correctness of 

the weather station can be represented by the probability tree. 
 

 
 
 

• Notice that the ordering of conditioning is not what we want.   
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• Hence we flip the probability tree: 
 

 
 
 
• Hence given that the weather station says “It will rain tonight”, the probability we should now 

assign to the outcome that it will actually rain tonight is 0.818, up from the prior value of 0.6. 
 

 
 

• Numerical computations using Bayes’ Theorem are as follows. 
 

p(r1 | ξ) = 0.6   p(r2 | ξ) = 0.4 
 p(s1 | r1, ξ) = 0.9  p(s2 | r1, ξ) = 0.1 
 p(s1 | r2, ξ) = 0.3  p(s2 | r2, ξ) = 0.7 
 
 p(r1 | s1, ξ) = K p(r1 |  ξ) p(s1 | r1, ξ)   =  (0.6)(0.9) K = 0.54 K 
 p(r2 | s1, ξ) = K p(r2 |  ξ) p(s1 | r2, ξ) =  (0.4)(0.3) K = 0.12 K 
 

where K is a constant which can be eliminated by using the constraint 
p(r1 | s1, ξ) + p(r2 | s1, ξ) = 1. 

 
• Equivalently, we can normalize the numbers 0.54 and 0.12 (to add up to 1) and obtain: 
 

 p(r1| s1, ξ) = 
12.054.0

54.0
+

 = 0.818  

 

p(r2| s1, ξ) = 
12.054.0

12.0
+

 = 0.182. 
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2.3.2 Application of Bayes’ Theorem in Diagnosis and Testing 
 
• In diagnosis, we are interested in the probability of an event that can be either “supported” or 

“ruled out” based on one or more tests.  
 
• Examples of such events are:  A person suffering from disease X, the transmission system of a 

vehicle being faulty, etc. 
 
• A diagnosis process where positive test results or findings “supported” the initial diagnosis as 

shown below: 
 
 

 
 
 
• It is also possible that the test produces negative results that reduce the pretest probability: 
 

 
 

• For brevity, we will be omitting the ξ symbol in our probability notations from now on, but they 
are understood to be there. 

 
• Let D be the event that is being diagnosed,  and let p(D) = pretest probability = probability that a 

disease or fault is present before conducting any test. 
 
 
Example 
 
• In trying to determine if a person is suffering from TB, the prevailing risk of contracting TB in a 

certain community can be used as the pre-test probability. 
 
• Let T be a test whose outcome can be either positive (+ve) or negative (–ve). 
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Four possible situations arising out of the test 
 

 
 

 
 
True-Positive Result 
 
• Given that the disease or fault is present, the probability of the test detecting it (i.e., correctly 

gives a positive test result) =  p(+ve | D). 
 
• p(+ve | D) is called the True-Positive rate or Sensitivity of the test. 
 
 
True-Negative Result 
 
• Given that the disease or fault is not present, the probability of the test indicating the absence of 

it (i.e., correctly gives a negative test result) = p(–ve | ¬D). 
 
• p(–ve | ¬D) is called the True-Negative rate or Specificity of the test. 
 
 
False-Positive Result 
 
• Given that the disease or fault is not present, the probability of the test wrongly indicating a 

positive test result = p(+ve | ¬D) = 1 – p(–ve | ¬D) = 1 – specificity. 
 
• p(+ve | ¬D) is called the False-Positive rate of the test 
 
 
 
False-Negative Result 
 
• Given that the disease or fault is present, the probability of the test wrongly indicating a negative 

test result =  p(–ve | D) = 1 – p(+ve | D) = 1 – sensitivity. 
 
• p(–v e| D) is called the False-Negative rate of the test.  
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• In practice, we would like to determine what is the probability of the suspected cause D given a 
positive or a negative test result. 

 
• We are interested in the information shown in the following tree: 
 

 
 
 

• We can obtain the required conditional probabilities by flipping the original tree: 
 
 

 
 

 
)|()()|()()( DvepDpDvepDpvep ¬+¬++=+  

 
)|()()|()()( DvepDpDvepDpvep ¬−¬+−=−   
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Case 1:  When the test result is positive  
 
• When the test result is positive, the post-test probability is 
 

))|(1))((1()|()(
)|()(

)|()()|()(
)|()()|(

DvepDpDvepDp
DvepDp

DvepDpDvepDp
DvepDpveDp

¬−−−++
+

=

¬+¬++
+

=+
 

 
 

where 
 
• p(D) is the prior probability for D. 
 
• p(+ve | D) is the sensitivity (true-positive rate) of the test. 

 
• p(–ve | ¬D) is the specificity (true-negative rate) of the test. 

 
 
 
 
 
Case 2:  When the test result is negative 
 
• When the test result is negative, the post-test probability is 
 

)|())(1())|(1)((
))|(1)((

)|()()|()(
)|()()|(

DvepDpDvepDp
DvepDp

DvepDpDvepDp
DvepDpveDp

¬−−++−
+−

=

¬−¬+−
−

=−
 

 
 

where 
 
• p(D) is the prior probability for D. 

 
• p(+ve | D) is the sensitivity (true-positive rate) of the test. 

 
• p(–ve | ¬D) is the specificity (true-negative rate) of the test. 
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Example:  Diagnosis of lung cancer using X-ray 
 
• An elderly man with hemoptysis and a long history of cigarette smoking is suspected to have lung 

cancer and the estimated pretest probability is 0.4.   
 
• The interpretation of the chest X-ray is “mass lesion in the right upper lobe”. 
 
• The effectiveness of the X-ray in detecting lung cancer is 

• Sensitivity or true-positive rate = 60% 
• Specificity or true-negative rate = 96% 
 

• How should the doctor interpret the finding? 
 
• The probability of lung cancer given a positive X-ray result is 
 

91.0
)96.01)(4.01()6.0)(4.0(

)6.0)(4.0()|( =
−−+

=+veDp
 

 
 

 
 
 

• Conclusion:  The patient probably has lung cancer, although further confirmation may be 
required before starting treatment.  

 
 
What if the chest X-ray had not shown a mass lesion? 
 
• The probability of lung cancer given a negative X-ray result is 
 

22.0
)96.0)(4.01()6.01)(4.0(

)6.01)(4.0()|( =
−+−

−
=−veDp
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The Effect of Pretest Probability on Posttest Probability 
 
• How would the pretest probability affect the final conclusion? 
 

I.  When the result is positive: 
 

 
 

• The response between posttest probability and pretest probability is usually an increasing 
concave function. 

 
II.  When the result is negative: 

 

  
 

• The response between posttest probability and pretest probability is usually an increasing 
convex function. 
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Effect of Test Sensitivity 
 
• Suppose we fix the Test Specificity at 0.95 and allow the Test Sensitivity to vary from 0.60 to 

0.95 in steps of 0.05. 
 
 
 

Specificity = 0.95, Sensitivity = 0.6 to 0.95, step 0.05 

 
 

 
Observations: 

 
• When the test result is positive, the set of response curves in the upper region are all near to each 

other.  Hence for any pretest probability, the posttest probability will not vary very much when 
the test sensitivity varies from 0.6 to 0.95.   
 

• On the other hand, when the test result is negative, the set of response curves in the lower region 
are very far apart.  Hence for any pretest probability, the posttest probability will vary a lot when 
the test sensitivity varies from 0.6 to 0.95. 
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• We observe similar results when the Test Specificity is fixed at 0.6 and the Test Sensitivity varies 

from 0.60 to 0.95 in steps of 0.05. 
 
 

Specificity = 0.60, Sensitivity = 0.6 to 0.95, step 0.05 
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Effect of Test Specificity 
 
• Suppose we fix the Test Sensitivity at 0.95 and allow the Test Specificity to vary from 0.6 to 0.95 

in steps of 0.05. 
 
 

Sensitivity = 0.95, Specificity = 0.6 to 0.95, step 0.05 

 
 

 
 
Observations: 

 
• When the test result is positive, the set of response curves in the upper region are all very far 

apart.  Hence for any pretest probability, the posttest probability will vary a lot when the test 
specificity varies from 0.60 to 0.95. 
 

• On the other hand, when the test result is negative, the set of response curves in the lower region 
are all very near to each other.  Hence for any pretest probability, the posttest probability will not 
vary very much when the test specificity varies from 0.60 to 0.95. 
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• We observe similar results when the Test Sensitivity is fixed at 0.6 and the Test Specificity varies 

from 0.6 to 0.95 in steps of 0.05. 
 
 

Sensitivity = 0.6, Specificity = 0.6 to 0.95, step 0.05 
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Interpreting a Sequence of Tests 
 
• Diagnostic tests are often used in sequence.   
• An abnormal finding on one test may raise concerns that only can be resolved by another test. 
 
• What method should be used to interpret the results of the second test? 

1. Use the posttest probability of the first test as the pretest probability for the second test.   
2. Use the true-positive (sensitivity) and true-negative rate (specificity) of the second test and 

Bayes’ Theorem to calculate the posttest probability for the second test. 
 
• Assumption:  The two tests are independent. 
 

 
 
Accuracy of a Test 
 
• The term Accuracy should not be confused with the Sensitivity (true +ve rate) and Specificity 

(true –ve rate) of a test. 
 

• Accuracy = Proportion of cases that are classified correctly.   
 

• It depends on the base rate of the population being tested, sensitivity and specificity. 

 
 

• Accuracy  =  Base rate × Sensitivity + (1 – Base rate) × Specificity 
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Exercises 
 
P2.1 (Clement and Reilly 2001, Exercise 7.15 p 283) 

Julie Myers, a graduating senior in accounting is preparing for an interview with a Big Eight 
accounting firm.  Before the interview, she sets her chances of eventually getting an offer 
from this firm at 50%.  Then on thinking about her friends who have interviewed and gotten 
offers from this firm, she realizes that of the people who received offers, 95% had good 
interviews.  On the other hand, of those who did not receive offers, 75% said they had good 
interviews.  If Julie Myers has a good interview, what are her chances of receiving an offer? 

 
 
P2.2 In the city, there are only two taxicab companies, the Blue and the Green.  As you may 

suppose, the Blue cabs are blue and the Green cabs are green.  The Blue Company operates 
90% of all cabs in the city and the Green Company operates the rest.  One dark evening, a 
pedestrian is killed by a hit-and-run taxicab. 

 
 There is one witness to the accident.  In court, the witness’s ability to distinguish cab colors 

in the dark is questioned, so he is tested under conditions similar to those in which the accident 
occurred.  If he is shown a green cab, he says it is green 80% of the time and blue 20% of the 
time.  If he is shown a blue cab, he says it is blue 80% of the time and green 20% of the time. 

 
 The judge believes that the test accurately represents the witness’s performance at the time of 

the accident, so the probabilities he assigns to the vents of the accident agree with the figures 
reported by the test. 

 
(a) Construct the probability tree representing the judge’s state of information.  Label all 

end-points, supply all branch probabilities, and calculate and label all endpoint 
probabilities. 

 
(b) Flip the tree.  Label all endpoints, supply all branch probabilities, and calculate and label 

all end-point probabilities. 
 
(c) If the witness says “The cab involved in the accident was green,” what probability 

should the judge assign to the cab involved in the accident being green? 
 
(d) How does the answer to part c compare to the witness’ accuracy on the test?  Does this 

result seem surprising?  Why or why not? 
 
 
P2.3 Tommy is a contestant on the game show “Let’s Make a Deal.”  Up on stage, there are three 

boxes, one of which contains a valuable prize; the other two are empty.  The rules of the game 
are that Tommy first chooses one of the boxes.  Then Paul, the game show host, opens one of 
the remaining two boxes, making sure to open an empty one.  If both the remaining boxes are 
empty, then he opens either one at random. Tommy then gets to decide if he wants to stick 
with his initial selection or switch to the remaining unopened box.  If the prize is in the box 
that he chooses, he wins the prize.  

 
Suppose Tommy has been watching every show for the entire season and he believes that 
there is a 0.6 chance that the prize will be in Box A, a 0.1 chance that it will be in Box B, and 
a 0.3 chance that it will be in Box C.  What is Tommy’s best strategy? 
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P2.4 Your friend Ella is unsure about her plans for Friday night, although she knows that either 

John or Peter will ask her to see a movie (either “Cinderella Man” or “Red Eye”).  John and 
Peter are friends, so only one of them will ask her to see a movie.  You believe that Peter is 
twice as likely as John to ask her.  If John asks, you believe that they will see “Cinderella 
Man” with probability 1/4.  If Peter asks, you believe they will see “Cinderella Man” with 
probability 5/8.  Suppose you found out later that Ella saw the movie “Red Eye”, which of 
the following statements must be true? 

 
I. Ella has a higher probability of seeing the movie with John than with Peter 
 
II. Ella has a higher probability of seeing the movie with Peter than with John 
 
III. Ella is equally likely to have seen the movie with either John or Peter 
 
IV. Ella ate popcorn at the movies 
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